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Abstract

The thermally developing laminar forced-convection flow and heat transfer characteristics in corrugated ducts
confined by sinusoidal and arc curves, which are often encountered in honeycomb desiccant wheels, are numerically
investigated via the boundary-fitted coordinate system. The control volume-based finite difference technique is applied
to obtain the solution utilizing the numerically generated boundary-fitted coordinates. According to this method, the
complex domain in the physical plane is transformed into a regular square domain in the computational plane. Studied
and graphically illustrated are the effects of aspect ratios and bending ratios of the ducts on the friction coefficients and
heat transfer coeflicients under uniform wall temperature (T) boundary conditions. For the special cases of corrugated
ducts such as circular, square, and flat sinusoidal, the results are compared with some findings in the literature, and very
good agreement is obtained. Furthermore, variations of the bulk temperature, Nusselt numbers, velocity, and tem-
perature profiles in the entire thermal entry region are plotted. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Rotary desiccant wheels are the hearts of various
desiccant cooling and dehumidification systems. There-
fore, much effort has been devoted to develop wheels of
high performance combined with low cost [1,2]. The
honeycomb-type wheel, as shown in Fig. 1, has drawn
much attention due to its coherent two advantages: large
contacting area (3000 m?/m?) and compactness [3]. A
honeycomb wheel is usually composed of numerous
corrugated ducts where process air exchanges moisture
and heat with the solid adsorbent. The corrugated
sinusoidal duct geometry is the most common in hon-
eycomb wheels because it is advantageous in its sim-
plicity of construction and large surface area. In such
small diameter ducts, laminar flow prevails. The cross-
sectional geometry of a corrugated sinusoidal duct is
shown in Fig. 2. It is observed that the single tube can be
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approximated with a sine curve for the upper portion
and an arc for the lower portion.

Heat transfers of laminar flow have been extensively
studied for regularly shaped ducts. The work of Shah
and London [4] contains a thorough review of heat
transfer under developing and fully developed laminar
flow in ducts of many cross-sectional shapes. In recent
years, with the progress on computational techniques,
ducts of irregular shapes are increasingly investigated.
Sherony and Solbrig [5] investigated the heat and mass
transfers in a corrugated duct surrounded by a sine
curve and a flat plate. Fischer and Martin [6] studied the
friction factors in ducts confined by corrugated parallel
walls. Ebadian and Zhang [7] studied the fluid flow and
heat transfer in a crescent-shaped lumen catheter. Dong
and Ebadian [8] provided a numerical analysis of ther-
mally developing flow in elliptic ducts with internal fins.
All these studies are informative. However, results for
the corrugated sinusoidal ducts (confined by sine and arc
curves), which form the honeycomb desiccant wheel
being studied, are still not available from the open lit-
erature. The authors believe that it is imperative to know
the heat and mass transfer characteristics in such ducts,
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Nomenclature

a half-duct height (m)

A cross-sectional area (m?)

b half-duct width (m)

cp specific heat (kJ kg™ K™')
Dy hydraulic diameter (m)

e bending ratio of duct

f friction coefficient

hy local convective heat transfer coefficient
(kW m™2 K1)

J Jacobian operator, Eq. (39)

k thermal diffusivity (kW m™" K1)

Nu Nusselt number

Nut  Nusselt number for thermally fully developed
laminar flow with T condition

P pressure (Pa)

Pe perimeter of duct (m)

0 heat transfer rate (kW)

Pr Prandtl number

Re Reynolds number
temperature (K)
u velocity (m s7!)
X,y dimensional transversal coordinates (m)
z axial coordinate (m)
R radius of lower boundary (m)

Greek symbols

coefficient, Eq. (34)

coefficient, Eq. (35)

coefficient, Eq. (36)

coefficient, Eq. (37)

coefficient, Eq. (38)

aspect ratio

height of lower limit of duct (m)
transversal coordinates in computational
plane

dynamic viscosity (kg m™' s7!)
angle (rad)

density (kg m~?)

dimensionless temperature
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Fig. 1. Configurations of a honeycomb desiccant wheel.
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Fig. 2. Cross-sectional view and geometry of a corrugated duct
in the wheel.

to further study the adsorption-regeneration dynamics
of the wheel.

Owing to the irregular geometry and the small size of
the passages, it is very difficult to directly measure
anything but overall time-mean performances. The nu-
merical solution method becomes important and will
supply the much-needed design information. To address
the complexity of the duct geometry, the numerically
generated boundary-fitted coordinate system will be
applied to discretize the computational domain. Ac-
cording to this technique, the governing equations can
be solved with regular geometric methods by trans-
forming the complex duct geometry to a regular square
duct.

It should be mentioned now, however, that several
other studies have attempted to provide general cor-
relations for ducts of arbitrary cross-sectional shape.
Shah [9] used analytical methods to predict overall
friction factors and heat transfer. Yilmaz and co-
workers provided area- and perimeter-based correla-
tions for friction factors [10] and Nusselt numbers [11].
While the correlations are complicated and reasonably
accurate, they do not provide local values around the
duct perimeter of heat and momentum transfer. Fur-
ther, the correlations have only been compared to ducts
with regular cross-sections, such as ellipses, rectangles,
and triangles.
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2. Basic equations

The problem considered here is that of a duct shown
in Fig. 2. The upper boundary can be expressed as a
sinusoidal function

y:a[l—cos(%xﬂ7 (1)

where a is the half-height of the sine duct and b is the
half-width of the duct.

The lower boundary is an arc, which can be expressed
as:

y=R(sinw—1)+ 4, (2)
w:amos@;”), (3)
R:%<%2+5>, 4)

where R is the radius of the arc (m) and ¢ is the height of
the arc (m). The value of J can be greater or less than 0.
The signs of J for two consecutive ducts in a wheel are
opposite. When 6 = 0, the lower boundary becomes a
flat plane. This special case was studied by Sherony and
Solbrig [5], analytically, which provides a reference for
our study.

Aspect ratio of the duct

a
=_. 5
=2 (5)

Bending ratio of the duct is defined as
1)
e=y- (6)

The flow in the duct is considered to be laminar and
hydrodynamically fully developed, but thermally devel-
oping in the entrance region of the duct. The fluid is
Newtonian with constant thermal properties. Addition-
ally, a uniform wall temperature boundary condition is
considered.

Momentum equation:

For two-dimensional fully developed laminar flow (fluid
has axial velocity only), the Navier-Stokes equations
reduce to [12]

@_._@ 7d_P (7)
M o 9?2 ) dz’

where p is the dynamic viscosity (Pa s), u is the fluid
velocity (m s™!), P is the pressure (Pa), and z is the axial
coordinate (m).

Energy equation:

or (T 0T
Y Tl 8
el (6x2+6y2)’ )

where 7 is the fluid temperature (K), & is the thermal
diffusivity (kW m~' K1), p is density (kg m ) and cp is
specific heat of air (kJ kg™ K™).

The above two equations can be normalized as

Rut b\ % 4b?
o o 9
Ox*2 (a) 6y*2 + Dﬁ ( )
and
0 %0 b\?* 820
ozt Ox*?? + (;) oy’ (10)

where, in the above equations, the dimensionless vel-
ocity is

. piu
- _ 11
" (dP/dz)D} (1
and dimensionless temperature is
T—Tw

where 7; is the inlet temperature and 7w is the tem-
perature of duct wall.

Dimensionless coordinates:

s X

X _2b7 (13)

s

y _2(17 (14)

7=, (15)
DyRePr

where the hydraulic diameter

44

Dy = — 16
h Pe ; ( )
where 4, is the cross-sectional area of the duct (m?) and
Pe is the perimeter of the duct (m).
In Eq. (10), U is a coefficient defined by

ut 4b?
U=—_—— 17

wr D}’ (17)
where u} is the average dimensionless velocity on a
cross-section and is calculated by

y = L Jerdd (18)
As

The characteristics of fluid flow and heat transfer in the

duct can be represented by the product of the friction

coefficient and the Reynolds number, the dimensionless

bulk temperature, and the Nusselt number:

o () o

Op(z") = f[jfu;f(;dj (20)
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The local Nusselt number is

Nuy = . (21)

As will be discussed later, the local Nusselt number de-
creases asymptotically from a very high value near the
entrance of a tube to the fully developed value Nut at the
end of thermal entry length. It can be used to calculate
the local convective heat transfer coefficient and to es-
timate the thermal entry length of a tube.

Considering the energy balance in a control vol-
ume of length Az, heat transferred through convection
is

01 = hiPeAz(Ty — Th). (22)

Enthalpy change of the fluid in the control volume is

0y = pumAscy AT, (23)
Since

01 =0 (24)
and

Az = Az DyRePr = Az* %’“%, (25)
thus

h = — Lpumchh A—Hb = 1k Ad, . (26)

40, Az 40, Dy Az

Substituting the above equation to Eq. (21), and con-
sidering the control volume to be infinitely small, then
we obtain the local Nusselt number as
L do,
40, dz-”

The average Nusselt number from 0 to z* is obtained as

1 [
Nuy, = — / Nuy dz*. (28)
z* 0
Substituting Eq. (27) to (28), it is obtained that
1
Nup, = = In Oy (29)

2.1. Boundary conditions

The flow is assumed hydrodynamically developed
and thermodynamically developing. This means that the
cross-sectional velocity field does not change with tube
length, while the temperature fields vary with tube
length. For the honeycomb-type desiccant wheels,
strictly speaking, the tube wall is neither an ideal uni-
form temperature nor an ideal uniform heat flux
boundary condition. However, the temperature differ-

ence on the wall is relatively small, compared with fluid
temperature variations [5]. Therefore, a uniform wall
temperature boundary condition (T) is considered
(Tw = const). In other words

u* =0, 0=0 on the wall of the duct. (30)

Inlet condition
0=1, atz =0. (31)

Another boundary condition often considered is the
constant heat flux (H) boundary condition. For a heat
exchanger with highly conductive materials (e.g., cop-
per, aluminum), the H condition may apply. In practice
it may be difficult to achieve this boundary condition for
non-circular ducts, as discussed in the work of Shah and
London [4]. It is already known that Nuy is higher than
Nur for all duct geometries. For sinusoidal ducts, Nuy is
approximately 30% higher than Nur.

3. Results and discussion
3.1. Boundary-fitted coordinates

The difficulty with the complex nature of the duct
shape may be circumvented by a numerically generated
coordinate system. The transformation between the
physical coordinates (x,y) and the boundary-fitted co-
ordinates (£, #), which is usually a square domain, is
achieved by solving two Poisson equations on the (x, y)
domain, see [13,14].

Egs. (9) and (10) can then be transformed to the
computational domain as follows:

01l1 ou* ou*
6_5{3 (“a—é‘ﬁa—nﬂ

NECHRYEAY o
an|J\a) Uy Pae
e

4
Dy

=0, (32

0=l (55
SEOEa)l e

where

- [2]-[3]

- [ [3]

-~ ox O’x 0y % ]’ dy :
“5‘[@—5@52%—5@?}/{{&} ) oo
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B dy 0’y  ox o%x R ak oy :
v=-[Garramar)/al o) |
_ 0(x,y) Oxdy OxO0y

a(&m) dcon dpdc (39)

Using a control volume-based finite difference procedure
[15], the governing differential equations (32) and (33)
are reduced to a set of algebraic equation systems. In the
process, the non-linear cross-derivative, 0%/0¢0y, is rel-
atively small and is treated as a source term. Therefore,
iteration is needed to obtain the solution for each
equation. Since the equation for the velocity profile does
not involve the temperature function, the velocity profile
may be determined independently of the temperature
profile. In other words, the momentum equation is
solved first to find the fully developed velocity field, and
then the three-dimensional energy equation with its
parabolic properties is solved by ADI techniques [15].

3.2. Validation of the procedure

To assure the accuracy of the results presented, nu-
merical tests were performed for the duct to determine
the effects of the grid size. It indicates that 31 x 31 grids
on cross-section and Az* = 0.00025 axially are adequate
(less than 0.1% difference compared with 41 x 41 grids
and Az* = 0.000125). For hydrodynamically fully de-
veloped laminar flow in ducts, (fRe) is a constant and in
the thermal entry region, the local Nusselt number will
decrease and approach asymptotically to a lower limit-
ing value Nut with the marching of flow. To validate the
procedure, (fRe) and Nut for some ducts are calculated
and compared with the results found in references. The
comparisons are listed in Table 1.

From this table, it can be concluded that maximum
errors are less than 0.8% for (fRe) and less than 0.9% for
NMT.

3.3. Effects of bending ratios

For e = 0, the corrugated ducts reduce to sine ducts
with flat lower boundaries whose results are listed in

Table 1. The values of (fRe) and Nut are in excellent
agreement with the published data. In practical desic-
cant wheels, e would be greater or less than 0, especially
when the ducts are in zones of small diameters. For these
ducts, the friction and heat transfer coefficients are af-
fected by the bending ratio e. The effects of e on (fRe)
are shown in Fig. 3 and the effects on Nur are shown in
Fig. 4.

Fig. 3 shows the variations of (fRe)/(fRe), (where
subscript 0 means e = 0) with various e for different
aspect ratios. It is seen that the greater the e, the smaller
the (fRe). The ratio can be as low as 0.5 when e = 0.5
and as high as 1.5 when e = —0.5.

Fig. 4 shows the variations of Nur/Nut, (ratio of the
Nusselt number for bending duct to that for e = 0 with
the same aspect ratio) for different aspect ratios. The
smaller the bending ratio, the higher the Nusselt num-
ber. The comparisons of Figs. 3 and 4 also disclose that
the higher the friction coefficients, the higher the Nusselt
numbers. Generally speaking, e > 0 has positive effects
on friction coefficients, but negative effects on Nusselt
numbers. On the other hand, ¢ < 0 would increase

friction coefficients and Nusselt numbers simul-
taneously, compared to ducts with flat lower
2
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Fig. 3. Effects of duct bending ratios on friction coefficients.

Table 1

Comparisons of (fRe) and Nur of fully developed laminar flow for some ducts from the present study and those from the literature
Shape T (fRe) Nut

Present study Refs. [4,5] Error (%) Present study Refs. [4,5] Error (%)

Circular 1.0 16.081 16 0.51 3.672 3.657 0.41
Square 1.0 14.115 14.227 0.78 3.001 2.976 0.84
Elliptic 0.5 16.941 16.823 0.70 3.766 3.742 0.64
Sine 2.0 14.576 14.553 0.16 2.658 Unavailable
Sine 1.5 13.934 14.022 0.63 2.614 2.6 0.54
Sine 1.0 12.922 13.023 0.77 2.463 245 0.53
Sine 0.75 12.326 12.234 0.75 2.317 2.33 0.56
Sine 0.50 11.173 11.207 0.30 2.135 2.12 0.71
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Fig. 4. Effects of duct bending ratios on Nusselt numbers.

boundaries. To know the reason why, let us plot velocity
fields in Fig. 5 and temperature fields in Fig. 6. The
comparisons of Figs. 5(a) and (b), and 6(a) and (b) show
that the bigger the e, the larger the dead spaces in the
corners. The larger the dead zones, the more inefficient
of the transfer area, which results in decreased friction

0.75

025 —

(a) x*

coefficients and Nusselt numbers. It is interesting to note
that the shapes of isotherms and iso-velocities are very
similar to those of triangular ducts, however, the maxi-
mum velocity and temperature occur closer to the center
than those of the triangular ducts [5] for same aspect
ratios (duct height-to-width ratio). The shapes of iso-
lines change from triangle with round corners near the
boundary to circles at the center gradually. Further-
more, both the velocity gradients and the temperature
gradients have their highest values near straight
boundaries, while minima are in the corners. These
phenomena are also in agreements with the holographic
interferometric observations of temperature fields in
such ducts [16].

3.4. Local Nusselt numbers

The axial variations of bulk temperature are shown
in Fig. 7 for 7 = 1.0. Inspection of the curves in this
figure reveals that the bulk temperature is strongly
variant with e at the entrance region of the duct. How-
ever, as the air passes through the duct, the bulk tem-
perature is dependent on the value of e. Positive e results
in a bigger bulk temperature than a negative e at the

(b) x*

Fig. 5. Fully developed velocity profile, the isoclines are lines of constant u*/u: (a) = 0.5, e = 0.15; (b) 1 = 0.5, e = 0.15.

0.75 |~

0.25 |~

(a) x*

(b)

Fig. 6. Isotherms for t = 0.5 at z* = 0.1: (a) e = 0.15; (b) e = —0.15. The values are dimensionless temperatures 6.
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Fig. 7. Axial variations of bulk temperatures, T = 1.0.
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Fig. 8. Axial variations of local Nusselt numbers, t = 1.0.

same z* position, suggesting a decreased heat transfer
rate. Besides, a bigger bulk temperature would finally
lead to a longer thermal entry length.

Local Nusselt numbers against z* for 1= 1.0 are
presented in Fig. 8. It is seen that Nu; decreases from a
high value near the entrance to the fully developed value
Nur at a greater axial distance, which is presented in Fig.
4. This figure also illustrates that the local Nusselt
number decreases dramatically at the entrance region of
the duct as the bending ratio increases. However, this
variation decreases gradually until it reaches the as-
ymptotic limiting value. Generally speaking, positive e
have greater impacts than negative e do. This behavior
can also be seen from Fig. 7.

4. Conclusions

Convective heat transfer and fluid flow in corrugated
ducts confined by sinusoidal and arc curves are analyzed
numerically for various combinations of aspect and
bending ratios with uniform wall temperature con-
ditions. The boundary-fitted coordinate is used to solve
the difficulty induced by the complex physical domain.
The velocity and temperature fields are calculated and
graphically illustrated to investigate the effects of sharp
corners in the ducts. It is found that bending ratio, e, has
a great influence on both the friction coefficients and the
Nusselt numbers. The product of friction coefficient and
Reynolds number (fRe) could drop by 50% when
e =0.5 and rise by 50% when e = —0.5, compared to
ducts with flat lower boundaries. Positive e would de-
crease the Nusselt number and negative e would increase
the Nusselt number significantly. Besides, bending ratios
other than zero could also affects the thermal entry
length, local Nusselt numbers, and temperature/velocity
profile shapes. All these are due to the fact that the
greater the bending ratios, the larger the dead spaces, for
both the fluid flow and the heat transfer.
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